Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 52(1): 431-440, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38329179

RESUMO

The amount of the low-density lipoprotein receptor (LDLR) on the surface of hepatocytes is the primary determinant of plasma low-density lipoprotein (LDL)-cholesterol level. Although the synthesis and cellular trafficking of the LDLR have been well-documented, there is growing evidence of additional post-translational mechanisms that regulate or fine tune the surface availability of the LDLR, thus modulating its ability to bind and internalise LDL-cholesterol. Proprotein convertase subtilisin/kexin type 9 and the asialoglycoprotein receptor 1 both independently interact with the LDLR and direct it towards the lysosome for degradation. While ubiquitination by the E3 ligase inducible degrader of the LDLR also targets the receptor for lysosomal degradation, ubiquitination of the LDLR by a different E3 ligase, RNF130, redistributes the receptor away from the plasma membrane. The activity of the LDLR is also regulated by proteolysis. Proteolytic cleavage of the transmembrane region of the LDLR by γ-secretase destabilises the receptor, directing it to the lysosome for degradation. Shedding of the extracellular domain of the receptor by membrane-type 1 matrix metalloprotease and cleavage of the receptor in its LDL-binding domain by bone morphogenetic protein-1 reduces the ability of the LDLR to bind and internalise LDL-cholesterol at the cell surface. A better understanding of how the activity of the LDLR is regulated will not only unravel the complex biological mechanisms controlling LDL-cholesterol metabolism but also could help inform the development of alternative pharmacological intervention strategies for the treatment of hypercholesterolaemia.


Assuntos
Colesterol , Receptores de LDL , Receptores de LDL/metabolismo , LDL-Colesterol , Proteólise , Hepatócitos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
FEBS Lett ; 597(11): 1489-1502, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37235726

RESUMO

Bone morphogenetic protein 1 (BMP1), a member of the astacin family of zinc-metalloproteases, proteolytically cleaves the low-density lipoprotein receptor (LDLR) within its ligand-binding domain, reducing the binding and cellular uptake of LDL-cholesterol. Here, we aimed to determine whether astacin proteases other than BMP1 may also cleave LDLR. Although human hepatocytes express all six astacin proteases, including the meprins and mammalian tolloid, we found through pharmacological inhibition and genetic knockdown that only BMP1 contributed to the cleavage of LDLR in its ligand-binding domain. We also found that the minimum amino acid change required to render mouse LDLR susceptible to cleavage by BMP1 is mutation at the P1' and P2 positions of the cleavage site. When expressed in cells, the resulting humanised-mouse LDLR internalised LDL-cholesterol. This work provides insight into the biological mechanisms regulating LDLR function.


Assuntos
Proteína Morfogenética Óssea 1 , Peptídeo Hidrolases , Receptores de LDL , Animais , Humanos , Camundongos , Proteína Morfogenética Óssea 1/metabolismo , Colesterol , Hepatócitos/metabolismo , Ligantes , Lipoproteínas LDL/metabolismo , Mamíferos/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise , Receptores de LDL/genética , Receptores de LDL/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...